ORE RESOURCE ESTIMATION FOR GRAPHITE DEPOSIT AT RS MINE- KOTUHENA (Based on Bore Holes data)

ACCORDING TO JORC CODE 2012

Investigated and Report Prepared

By

K.Damayantha MSc. (Senior Mine Geologist)

April 2018

CH	IAPTER Pa	age
	LIST OF TABLES LIST OF FIGURES	II III
	LIST OF ABBREVIATIONS	IV
1	INTRODUCTION	1
	 1.1 HISTRY OF GRAPHITE MINING 1.2 LOCATION MAP 1.3 GEOPHYSICAL STUDY 1.4 CURRENT INVESTIGATION	1 2 3 4
2.	GENERAL GEOLOGY	5
	2.1 GEOLOGY OF THE STUDY AREA	5
3.	EXPLORATION PROGRAM	7
	 3.1 DRILL HOLE COLLAR SUMMARY	7 7 1 8 9
5	FIELD OBSERVATION AND DATA ANALIZING 2	21
	5.1 DATA COLLECTION FROM BORE HOLES25.2 DATA COLLECTION FROM OUT CROP25.3 SAMPLE ANALYZING26.1 RESOURCE BLOCK2	21 22 23 24
7.1	CONCLUSIONS AND RECOMMENDATIONS	26

TABLE OF CONTENTS

LIST OF TABLES

Caption

Table No.

Table	3.1 Drill holes collar summary	7
Table	3.2 Drill holes collar summary	. 7
Table	3.3 Drill holes collar summary	8
Table	3.4 Drill holes collar summar	8
Table	3.5 Drill holes collar summar	8
Table	3.6 Drill holes collar summa	9
Table	3.7 Drill holes collar summa	9
Table	3.8 Drill holes collar summa	9
Table	3.9 Lithology of drill holes	11
Table	3.10 Lithology of drill holes	11
Table	3.11 Lithology of drill holes	12
Table	3.12 Lithology of drill holes	12
Table	3.13 Lithology of drill holes 1	13
Table	3.14 Lithology of drill holes	13
Table	3.15 Lithology of drill holes 1	14
Table	6.1 Ore resource	25

LIST OF FIGURES

Figure No. Caption

Figure	1.1 Illastrates RS Mine owned area	1
Figure	1.2 Location map and mining license area	2
Figure	1.3 Geophysical study positive anomaly of terrain	3
Figure	1.4 Geophysical study positive anomaly of terrain	3
Figure	1.5 Geological map of study area	6
Figure	3.1 Details of completed drill holes at RS Mine	10
Figure	3.2 Lithology of the drill holes	14
Figure	3.3 Lithology of the drill holes	15
Figure	3.4 Lithology of the drill holes	15
Figure	3.5 Lithology of the drill holes	16
Figure	3.6 Lithology of the drill holes	16
Figure	3.7 Lithology of the drill holes	17
Figure	3.8 Lithology of the drill holes	17
Figure	4.1 Mineralization pattern	18
Figure	4.2 3D Modelling	19
Figure	4.3 3D Modelling	19
Figure	4.4 3D Modelling	20
Figure	4.5 3D Modelling	20
Figure	5.1 Data collection pictures	21
Figure	5.2 Data collection pictures	21
Figure	5.3 Data collection pictures	22
Figure	5.4 Data collection pictures	22
Figure	6.1 Inferred resource blocks	24

LIST OF ABBREVIATIONS

JORC	Joint Ore Reserve Committee
OB	Over burden
QzIMP	Impure quartz
G_Bio_Gn	Garnet Biotite Gneiss
Bio_Gn	Biotite Gneiss
Qz	Quartzite
H_Bio_Gn	Hornblende Biotite Gneiss
Ch_Gn	Charnockitic Gneiss
RF	Rock fracture
GF	Graphite fracture
GV	Graphite vein
IP	Iron pyrite fracture
Qt	Quartz

1 INTRODUCTION

1.1 HISTRY OF GRAPHITE MINING

Graphite mining in Sri Lanka carries a history of nearly two centuries. Even though the mining activities are extensively carried out, methods of exploration are not up-to-date when compared to rest of the world. Mineralization of vein graphite in the country shows a systematic pattern with respect to the surrounding geology. Understanding of local geology and structures is vital for explorations in extensively deformed terrains like Sri Lanka. Use of immature tools and technology in earlier days restricted the local mining activities to shallower levels, mainly due to the collapsing of pit walls as the excavation depth increases. Deeper subsurface mineralization in such regions can be further prospected with advanced modern geophysical methods.

The RS Mine Kotuhena which is situated in the Kurunegala District (2km from Khatagha graphite mine), is an area where open pit shallow graphite mining had been carried out at thirteen locations in early 20th century. One of the pits is called Ragina pit (English meaning is Queens's mine) and it appears that the operation has been in considerable extent. Mining operations has been abandoned after some time back due to decrease in demands and lack of technology to go deeper.

Fig1.1 Illustrates RS mine owned area between Ragedara mine and Kahatagaha -Kolongaha mine

1.2 LOCATION MAP

Fig 1.2 Grid Boundary shows Mining License area 1Km² and explored area

1.3 GEOPHYSICAL STUDY

The RS mine situates in high potential graphite mineralization zone in Sri Lanka. According to the result of the airborne survey done by Bora bora company in year 2014, the positive anomalies were identified at mine land and its covering exploration areas.

Fig 1.3 Positive anomaly show in terrain(red color) around Kahatagaha -Kolongaha and RS Mine premises area (Queens pit)

Fig 1.4 The blue square (1km) owned by RS mine with in positive anomaly is identified

1.4 CURRENT INVESTIGATION

Seven core drill holes were completed exploring 60m to 200m vertical depth from each drill holes location by focusing on major mineralization at Top, middle and bottom of the "Maduragoda antiform" (mountain). The graphite mineralization is intersected from 10cm to 60cm in six drill holes. The result analyzed, and calculations done by following guidelines of JORC 2012 code.

The JORC 2012 code is Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ('the JORC Code') is a professional code of practice that sets minimum standards for Public Reporting of minerals Exploration Results, Mineral Resources and Ore Reserves.

The JORC Code provides a mandatory system for the classification of minerals Exploration Results, Mineral Resources and Ore Reserves according to the levels of confidence in geological knowledge and technical and economic considerations in Public Report

2. GENERAL GEOLOGY

2.1 GEOLOGY OF THE STUDY AREA

The study area is belongs to the Highland Complex (Cooray 1994) of Sri Lanka and the dominant rocks in the area are Garnetiferous quartzofeldsfathic gneiss rich in hornblende and biotite, Charnokitic gneiss, quartzite, Hornblende biotite gneiss and Charnockitic biotite gneiss. Present study of the graphite mineralization at RS Mine revealed that the veins are found in Garnetiferous quartzofeldsfathic gneiss, Hornblende biotite gneiss and in Charnockitic biotite gneiss.

The general rock structure in the basement rock is indicated by a penetrative foliation averaging N10W. Regionally, several episodes of intense deformation have resulted in complex fold pattern in the area. The supracrustal rocks of the region have been faulted or sheared during the deformation episodes. The fracture systems in the area indicates north-west and south-east with steep dips. These are well exposed in the abandoned pits.

The RS Mines area is located closer to the fold axis of the "Maduragoda antiform" indicating higher possibility for the occurrences of thick graphite veins. The association of the deposits with high grade metamorphic rocks, their wide lateral extent and the grade and flake size of the graphite, suggests that they are ,most probably ,of hydrothermal origin (Katz 1987).

Presence of thick bands in the deeper parts of the presently active mines (Kahatagaha-Kolongha mines) located to the south of the area, indicates the possibility of thick veins of graphite occurrences in the target area too.

k

Emgr	Granite Gneis
Pmghb	Hornblende biotite gneiss
Emq	Quartz
Emqs	Impure Quartz
Emgqf ^{ga}	Garnetiferous quartzofeldspathic gneiss
Emgk ^b	Charnockitic biotite gneiss
Pringbh	Biotite Hornblende gneiss

Figure 2.1 Geological map of the study area

3. EXPLORATION PROGRAM

3.1 DRILL HOLE COLLAR SUMMARY

The exploration program conducted by Geological Survey and Mines Burao Sri Lanka. Seven drill holes completed in entire locations. The summary shown in table 3.1

DRILL HOLE COLLAR SUMMARY

Apr 07, 2018

Hole Id	Northing	Easting	Elevation	Depth	Dip	Azimuth
DH001	265218.00	174501.00	387.81	67.90	-60.00	330.00
DH002	265224.00	174500.00	387.85	150.20	-60.00	280.00
DH003	265109.00	174535.00	352.80	200.30	-60.00	317.00
DH004	265259.62	174403.52	425.71	111.70	-60.00	330.00
DH005	265318.18	174492.92	432.56	71.30	-60.00	330.00
DH006	265344.19	174429.98	443.57	81.30	-60.00	330.00
DH007	265147.25	174436.49	409.55	265.60	-60.00	317.00

Table 3.1All coordinate and depth shown in meters and dip and azimuth shown in degree

3.2 DETAILS OF COMPLETED DRILL HOLES

Seven drill holes completed (out of eight drill holes planned) at the selected locations (shown map 3.1) covering seven hectares at the mine promises. The azimuth of drill hole number two is not in position to intersect the veins. The five number of drill holes intersected veins of considerable thickness shown in table 3.2,3.3,3.4,3.5,3.6, 3.7 and 3.8. (**depth from** and **depth to** are in meters).

	DRIL	L HOLE LOG	Apr 07, 2018
HOLE ID : DH001			
NORTHING : 265218	EASTING : 174501	ELEVATION: 387.80)7
MAXDEPTH: 67.9	AZIMUTH : 330	DIP : -60	
From	То	Vein	Fracture
29.10	30.00	GBR	
45.90	46.00	10cm	
48.54	48.84	30cm	
51.33	51.43	10cm	
61.60	61.80	QzBGr	
62.30	62.35		GF

Table 3.2

DRILL HOLE LOG

Apr 07, 2018

HOLE ID : DH002

 NORTHING : 265224
 EASTING : 174500
 ELEVATION: 387.846

 MAXDEPTH : 150.2
 AZIMUTH : 280
 DIP : -60

From	То	Vein	Fracture
45.20	45.25		GF

DRILL HOLE LOG

Apr 07, 2018

HOLE ID : DH003

NORTHING : 265109 EASTING : 174535 ELEVATION: 352.8

MAXDEPTH: 200.3 AZIMUTH: 317 DIP: -60

Fracture	Vein	То	From
	15cm	48.88	48.73
	3cm	86.73	86.70
	50cm	107.15	106.65
	3cm	109.68	109.65
	60cm	110.60	110.00
	2cm	111.02	111.00
GF		112.15	112.10
GF		150.35	150.30
GF		160.40	160.35

Table 3.4

DRILL HOLE LOG

Apr 07, 2018

HOLE ID : DH004

NORTHING: 265259.617 EASTING: 174403.521 ELEVATION: 425.712

MAXDEPTH: 111.7 AZIMUTH: 330 DIP: -60

From	То	Vein	Fracture
45.90	46.00	10cm	
86.00	86.15	15cm	
99.60	100.00	40cm	

NORTHING : 265318.176 EASTING : 174492.921 ELEVATION: 432.562

MAXDEPTH: 71.3 AZIMUTH: 330 DIP: -60

From	То	Vein	Fracture
48.80	48.85		GF
62.30	62.65	35cm	

Table 3.6

DRILL HOLE LOG

Apr 07, 2018

HOLE ID : DH006

NORTHING: 265344.192 EASTING: 174429.977 ELEVATION: 443.573

MAXDEPTH: 81.3 AZIMUTH: 330 DIP: -60

From	Το	Vein	Fracture
67.90	68.10	20cm	
68.40	68.60	20cm	

DRILL HOLE LOG

Apr 07, 2018

HOLE ID : DH007

NORTHING: 265147.245 EASTING: 174436.486 ELEVATION: 409.549

MAXDEPTH: 265.6 AZIMUTH: 317 DIP: -60

Fracture	Vein	То	From
GF		86.75	86.70
	10cm	114.60	114.50
	30cm	175.90	175.30

Fig 3.1Details of completed drill holes at RS Min

3.3 LITHOLOGY OF DRILL HOLES

2	DRILL	Apr 08, 2018						
HOLE ID : DH001								
NORTHING : 265218	EASTING : 174501	ELEVATION: 387	.807					
MAXDEPTH: 67.9	AZIMUTH: 330	DIP : -60						
1	From	То	Rocktype					
	0.00	7.05	OB					
	7.05	7.10	G_Bio_Gn					
	7.15	9.90	Bio_Gn					
	9.90	10.90	Qzimp					
	10.90	14.88	Bio_Gn					
	14.93	15.80	Bio_Gn					
	15.85	19.38	Bio_Gn					
	19.43	26.44	G_Bio_Gn					
	26.44	29.10	Bio_Gn					
	30.00	35.40	QzIMP					
	35.40	45.90	Bio_Gn					
	46.00	48.54	Bio_Gn					
	48.84	51.33	Bio_Gn					
	51.43	51.90	Bio_Gn					
	51.90	60.34	G_Bio_Gn					
	60.34	61.60	Bio_Gn					
	61.80	62.30	G_Bio_Gn					
	62.35	66.50	G_Bio_Gn					
	66.50	67.90	Bio_Gn					

Table 3.9

DRILL HOLE LOG

Apr 08, 2018

HOLE ID : DH004

NORTHING: 265259.617 EASTING: 174403.521 ELEVATION: 425.712

MAXDEPTH: 111.7 AZIMUTH: 330

DIP : -60

From	То	Rocktype
0.00	6.00	OB
6.00	27.10	G_Bio_Gn
27.15	43.80	G_Bio_Gn
43.80	45.90	Bio_Gn
46.00	54.20	G_Bio_Gn
54.20	62.30	Bio_Gn
62.35	70.30	Bio_Gn
70.35	86.00	G_Bio_Gn
86.15	90.00	G_Bio_Gn
90.00	99.60	Bio_Gn
100.00	110.00	Bio_Gn
110.00	111.70	G_Bio_Gn

Table 3.10

NORTHING: 265224	EASTING : 174500	ELEVATION: 387.846
MAXDEPTH: 150.2	AZIMUTH : 280	DIP : -60

MAXDEPTH: 150.2

DIP : -60

From	Το	Rocktype
0.00	4.20	OB
4.20	8.95	Bio_Gn
8.95	11.90	Qz IMP
11.90	13.75	G_Bio_Gn
13.75	16.90	Ch_Gn
16.90	18.50	G_Bio_Gn
18.55	21.15	G_Bio_Gn
21.20	2125	G_Bio_Gn
21.30	27.70	Bio_Gn
27.70	27.75	IP
27.75	40.20	G_Bio_Gn
40.20	4520	Bio_Gn
45.25	49.00	G_Bio_Gn
49.05	50.00	G_Bio_Gn
50.05	51.00	G_Bio_Gn
51.05	52.00	G_Bio_Gn
52.05	54.20	G_Bio_Gn
54.25	56.40	Bio_Gn
56.45	61.50	Bio_Gn
61.55	63.00	G_Bio_Gn
63.05	68.25	G_Bio_Gn
68.30	77.60	Bio_Gn
77.60	79.10	Qz
79.10	83.57	H_Bio_Gn
83.57	84.20	Ch_Gn
84.20	138.20	G_Bio_Gn
138.20	138.25	IP
138.25	150.20	G_Bio_Gn

Table 3.11

DRILL HOLE LOG

Apr 08, 2018

HOLE ID : DH005

NORTHING: 265318.176 EASTING: 174492.921 ELEVATION: 432.562

MAXDEPTH: 71.3 AZIMUTH: 330 DIP: -60

o Rockty	То	From
0	8.10	0.00
0 G_Bio_	16.30	8.10
0 Bio_	23.20	16.30
0 Bio_	30.30	23.25
0 Qzl	31.30	30.30
0 G_Bio_	44.20	31.30
0 Bio_	48.80	44.20
0 Bio_	53.20	48.85
0 G_Bio_	6230	53.20
0 G Bio	71.30	62.65

Table 3.12

NORTHING: 265109	EASTING : 174535	ELEVATION: 352.8

MAXDEPTH: 200.3 AZIMUTH: 317 DIP: -60

From	То	Rocktype
0.00	9.50	OB
9.50	11.00	QzIMP
11.00	12.00	SL
12.00	13.10	QzIMP
13.10	14.00	SL
14.00	35.40	G_Bio_Gn
35.40	37.35	Bio_Gn
38.30	45.25	Bio_Gn
45.25	48.73	G_Bio_Gn
48.88	54.90	G_Bio_Gn
54.95	69.00	G_Bio_Gn
69.05	75.00	G_Bio_Gn
75.00	77.00	QzIMP
77.00	77.80	G_Bio_Gn
77.85	86.70	G_Bio_Gn
86.73	106.65	G_Bio_Gn
107.15	109.65	G_Bio_Gn
109.68	110.00	G_Bio_Gn
110.60	111.00	G_Bio_Gn
111.02	112.10	G_Bio_Gn
112.15	120.30	G_Bio_Gn
120.30	121.90	QzIMP
121.90	131.10	G_Bio_Gn
131.10	139.30	QzIMP
139.30	150.30	G_Bio_Gn
150.35	160.35	G_Bio_Gn
160.40	178.60	G_Bio_Gn
178.65	200.30	G_Bio_Gn

Table 3.13

DRILL HOLE LOG

Apr 08, 2018

HOLE ID : DH006

NORTHING: 265344.192 EASTING: 174429.977 ELEVATION: 443.573

MAXDEPTH: 81.3 AZIMUTH: 330 DIP: -60

From	То	Rocktype
0.00	9.80	OB
9.80	15.20	G_Bio_Gn
15.20	23.20	Bio_Gn
23.25	30.30	Bio_Gn
30.30	31.30	QzIMP
31.30	44.20	G_Bio_Gn
44.20	53.20	Bio_Gn
53.20	67.90	G_Bio_Gn
68.10	68.40	G_Bio_Gn
68.60	81.30	G_Bio_Gn

NORTHING: 265147.245 EASTING: 174436.486 ELEVATION: 409.549

MAXDEPTH: 265.6 AZIMUTH: 317 DIP : -60

From	Το	Rocktype
0.00	11.00	OB
11.00	13.10	QzIMP
13.10	28.00	G_Bio_Gn
28.00	48.70	Bio_Gn
48.70	65.00	G_Bio_Gn
65.00	65.05	RF
65.05	86.70	G_Bio_Gn
86.75	100.10	G_Bio_Gn
100.10	114.50	Bio_Gn
114.60	128.50	G_Bio_Gn
128.50	135.00	Bio_Gn
135.00	175.30	G_Bio_Gn
175.90	200.50	G_Bio_Gn
200.55	265.60	G_Bio_Gn

Fig 3.2

SU	RPAC M	INEX GROU	JР		SU	RPAC 1	MINEX GRO	UP	
CO	RE LOGGIN	G REPORT			CO	RELOGGI	NG REPORT		
RSI	MINE				RS	MINE			
Scale: 1:	1000 F	lan No.	Date: 0	-Apr-18	Scale: 1:	1000	Plan No.	Date: 0	7-Apr-
	Hole	H - DH002		-		H X=1745	ole Id : DH003 35 Y=265109 Z=353	1	
	X=174500	Y=265224 Z=388				Dip:	-60 Azimuth::317		1
DEPUT	tubutum (a	and analytication (and the factor		DEPTH	Sthology	/ rock- grpahitovein /	graphitefractur	
DEPTH	type	ein	e/fracture		0,00	41-		CT LIB. LET	1
0.00					5.00				
10.00					16.00				
15.00					200				
20.00					25.00				
25.00					30.00				
30.00					35.00				
35.00					40.00				
40.00					45.00				
45.00					50.00			1	
50.00					55.00				
55.00					65.00				
65.00					70.00				
70.00					75.00				
75.00					NL 00				
80.00					85.00			1	
85.00					90.00				
90.00					95.00				
95.00					100.00				
100.00					105.00			1	
105.00					11500				1
110.00					120.00				
120.00					125.00				
125.00					130.00				
130.00					135.00				
135.00					140.00				
140.00					145.00				
145.00					150.00				1
130.00					160.00				
					165.00				
					176.00				
					175.00				
Bio	o_Gn				180.00				
					185.00				
					190.00				
					195.00				

Fig 3.3 & Fig 3.4

Fig 3.5 & Fig3.6

	I								
SURPAC MINEX GROUP									
CORE LOGGING REPORT RS MINE									
Scale: 1:	750	Plan	i No.		Date:	07-Apr-18			
	Hole Id : DH005 X=174493 Y=265318 Z=433 Dip=-60 Azimuth=330								
DEPTH	lithology type	/ rock	 grpahitevein / v ein 	e gi	raphitefract / fracture	tur-			
0.00 5.00									
10.00									
15.00									
20.00									
25.00									
30.00									
35.00									
40.00									
50.00									
55.00									
60.00									
65.00									
E_ ^{70.00}									

Fig 3.7 & Fig 3.8

4 DATA INTERPRITATION

4.1 MINERALIZATION PATTERN

According to the result of drilling data major four graphite mineralization were identified in entire drilling areas which are VEIN-2, VEIN-3, VEIN-4 and VEIN-5. The VEIN-1, VEIN-4P, VEIN-5P, VEIN-6 and VEIN-7 shown in Fig 4.1

Fig 4.1

4.2 3D MODELLING

The result of the exploration program and data were obtained from total station survey and GPS survey. Mine model is created with graphite mineralization shown in fig 4.2.

4.2 ZY plane with core drill holes rust brown color shown terrain of RS mine

Fig4.3 Inferred resource is shown by red color and the blue and rust brown color show inferred resource predicted and terrain of RS Mine respectively

Fig4.4 & 4.5 Inferred resource is shown by red color and the blue and rust brown color show inferred resource predicted and terrain of RS Mine respectively

5 FIELD OBSERVATION AND DATA ANALIZING

5.1 DATA COLLECTION FROM BORE HOLES

Fig 5.1 The graphite vein (60cm) was identified from bore hole number DH003

Fig5.2 The graphite vein (30cm) was identified from bore hole number DH001

Fig-5.3 Adit portal of the Mine (Picture taken year 2011)

Fig-5.4 Old graphite pit near queen's mine

5.3 SAMPLE ANALYZING

Sample analyzing was done by laboratory of Geological Survey and Mines Bureau report are shown below

භූ විදහා සමීකෂණ හා පතල් කායතිංශය புவிச்சரிதவியல் அளவை, சுரங்கங்கள் பணியகம் **GEOLOGICAL SURVEY & MINES BUREAU**

> හෝ 569, එපිටමුන්න තාර, පිටසේට්ස්ට්, මූ ලංකා. இல.: 569, ஸ்பீட்டமுல்ல வீதி, பட்டனோட்டே, இலங்கை. No.: 569. EPITAMULLA ROAD. PITAKOTTE, SRI LANKA.

RESULTS OF CHEMICAL ANALYSIS

Laboratory Reference No. : AL/18/38/GEN-31

Material	: Graphite
No. of Samples	: 01
Submitted by	: R.S.Mines (Pvt) Ltd.
Submitted Date	: 05.04.2018

Parameter	Results
Percentage of Carbon	95.73%
Density	2.2g/cm ³

Note. 1: The analysis on Carbon was performed on the powdered sample dried at 105°C 2: The density was determined after visible rock fragments were removed.

Authorized signatory

06.04.2018 Date

Y. P. Shemalie Siriwardana d Cherniet with the second al Survey & Mine Epitemulia Road, EDRM Hakotte.

23

6 RESOURCE ESTIMATION

6.1 **RESOURCE BLOCKS**

Resource estimation is done by using resource blocks created by core drilling data and out crop findings of four major mineralization and its predictions

Fig6.1 Inferred resource blocks at RS Mine

	e computation for t	he block fro	m the vein	_												
top drive bottom drive west side east side top drive bottom drive west side east side bottom drive west side east side bottom drive west side east side bottom drive West side bottom drive Mest drive drive <td></td> <td>Length of t</td> <td>the block</td> <td>Height of t</td> <td>the block</td> <td>Area of the block</td> <td></td> <td>Thickne</td> <td>ses</td> <td></td> <td>Length of influence</td> <td>Average block thickness</td> <td>Block volume</td> <td>Density T</td> <td>onnage</td> <td>Resourscate gory (type)</td>		Length of t	the block	Height of t	the block	Area of the block		Thickne	ses		Length of influence	Average block thickness	Block volume	Density T	onnage	Resourscate gory (type)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		top drive	bottom drive	west side	east side		top drive	bottom drive	West side	East side						
		Ltop	Lootom	"H	۳	ഗ്	Wtop	Wbottom	Wwest	Weast	٩	Wab	٧٥	d	~	
Image Nerage Nerage<		Ξ	Ξ	<u>E</u>	<u>[</u>	[m²]	Ξ	[<u></u>	Ē	Ē	[<u>m</u>]	Ē	[m]	[t/m ³] [1	[uo	
							average	average	average	average	c1+c2+c3+c4	C15/ C10	C₅*C₁6	annex II o	17*C18	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$							annex I	annex I	annex I	annex I						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		-	2	e	4		9	2	~	6	10	16	17	40	19	20
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		174.6	159.00	00.00	28.8	1022	0.00	0.13	0.00	0.00	159	0.125	1278.13	2.29	2927	INF
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		159	159.00	20.00	20	3198	8 0.13	0.00	0.00	00.0	159	0.125	399.75	2.29	915	INF
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$						1342						0.125	1677.88	2.29	3842	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		173.4	159.00	143.60	82.4	1861	0.00	0.70	00.0	0.00	159	0.700	13027.00	2.15	28008	INF
158.9 150.9 217.90 217.90 15253.00 215.30 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.310 215.311 215.31		159	159.00	20.00	20	318(0.70	00.0	0.00	0.00	159	0.700	2226.00	2.15	4786	INF
158.9 150.9 82.6 32.6 8699 0.00 0.45 0.760 0.00 150.9 0.450 3914.55 2.15 150.9 150.9 20 201 3018 0.45 0.00 0.00 150.9 0.450 1358.10 2.15 150.9 150.9 20 3018 0.45 0.00 0.00 150.9 0.450 1358.10 2.15 160.9 150.9 20 3018 0.45 0.00 0.00 0.00 150.9 0.450 2.15 93 44.2 45.9 11717 0.38 0.3375 1572.15 2.15 93 33 23 0.337 1572.15 2.15 165.215 2.16 93 33 20 18404 0.30 0.00 93 0.3375 1572.15 2.15 93 23 23 0.338 2279.56 2.16 1666 93 33 23						2179(0					0.70	15253.00	2.15	32794	
150.9 150.9 20 20 3018 0.45 0.00 0.00 150.9 0.450 1358.10 2.15 1 1 11717 1 <td></td> <td>158.9</td> <td>150.9</td> <td>82.6</td> <td>32.6</td> <td>698</td> <td>00.0</td> <td>0.45</td> <td>0.00</td> <td>00.0</td> <td>150.9</td> <td>0.450</td> <td>3914.55</td> <td>2.15</td> <td>8416</td> <td>INF</td>		158.9	150.9	82.6	32.6	698	00.0	0.45	0.00	00.0	150.9	0.450	3914.55	2.15	8416	INF
11717 117177 11717 11717 <t< td=""><td></td><td>150.9</td><td>150.9</td><td>20</td><td>20</td><td>3018</td><td>8 0.45</td><td>00.0</td><td>0.00</td><td>0.00</td><td>150.9</td><td>0.450</td><td>1358.10</td><td>2.15</td><td>2920</td><td>INF</td></t<>		150.9	150.9	20	20	3018	8 0.45	00.0	0.00	0.00	150.9	0.450	1358.10	2.15	2920	INF
93 93 44.2 45.9 4194 0.00 0.38 0.00 93 0.375 1572.75 2.15 93 93 20 20 1860 0.38 0.00 93 0.375 1572.75 2.15 93 23 23 0.38 0.00 93 0.38 706.80 706.80 706.80 7.26 93 20 20 0.00 0.00 93 0.38 706.80 7.66.80 7.76.80 7.66.80 7.66.80 7.66.80 7.66.80 7.66.80 7.66.80 7.66.80 7.76.80 7.76.80 7.76.80<						1444	2					0.45	5272.65	2:15	11336	
93 93 20 20 1860 0.38 0.00 0.00 93 0.380 706.80 2.21 6054 6054 0.00 0.00 0.00 0.038 2279.56 2.1686		63	63	44.2	45.9	419/	4 0.00	0.38	0.00	0.00	93	0.375	1572.75	2.15	3381	INF
6054 6054 0.38 2279.55 2.1686		93	93	20	20	186(0.38	0.00	0.00	0.00	93	0.380	706.80	2.21	1562	INF
						9027	4					0.38	2279.55	2.1686	4943	
52,984 52,984 0.462 24,483 2.16						52,984						0.462	24,483	2.16	52,916	

Ore resource co	omputation for the blo	ock from the	posible ve	ein(predictab	le)
Vein	Area of the block	Average Block thicknee	Dencity	Tonnage	Resoursca tegory (tyne)
Vein1	8553	0.462	2.17	8575	INF
Vein4B	13129	0.452	2.17	12877	INF
Vein5B	17436	0.452	2.17	17102	INF
Vein6	7426	0.452	2.17	7284	INF
Vein7	7436	0.452	2.17	7294	INF
V				101 03	
lotal vein(ion)				03,131	
Grand Total (Ton)		106,047			

Table 6.1 Ore resource computation of the block

7.1 CONCLUSIONS AND RECOMMENDATIONS

According to the resource calculation the total resource can be categorized into two parts which are Inferred resource (prepared by based on core drilling program and out crop data) and predictable Inferred resource (prepared by vein thickness of the immediate inferred resource). The total calculated resource is 107,729 tons (Inferred +predictable). The recommended mining activity is to start an adit towards SW, NE direction and perpendicular to the said graphite veins. A development program associated with activities such as an adit, drives and winzes, is required to convert resource blocks into indicated or measured blocks according to the JORC standard. Furthermore, a comprehensive underground core drilling program is needed to predict the location of mine shaft.

.....

K.Damayantha BSc. Msc Dip in project management (Senior Mine Geologist)